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Abstract—Social XR applications usually require advanced
tracking equipment to control one’s own avatar. We explore if Al-
based co-speech gesture generation techniques can be employed
to compensate for the lack of tracking hardware that many
users face. One main challenge is to achieve convincing behavior
quality without introducing too much latency. Previous work
has shown that both depend - in opposite ways — on the
length of the audio chunk the gestures are generated from,
and that gesture quality of existing models declines with lower
chunk sizes while still not reaching sufficiently low latency to
enable fluent interaction. In this paper we present an approach
that is able to generate continuous gesture trajectories frame
by frame, minimizing latency and yielding delays well below
buffer sizes of voice communication systems or video calls. A
project page with videos of the generated gestures is available at
https://nkrome.github.io/FrameCAGE.html.

Index Terms—extended reality, social interaction, animation,
machine learning, gesture generation

I. INTRODUCTION

Social VR applications provide an immersive and life-like
way of interacting over long distances. They do however suffer
from an accessibility issue, as they require expensive motion
tracking hardware. Modern generative Al methods can provide
a way of alleviating this issue by generating synthetic avatar
behavior from audio information [1]-[11], which is available
on all devices. This would enable eXtended Reality (XR)
applications where different users with different devices can
join a shared virtual environment as illustrated in Fig. (1).

We pursue this vision with a focus on augmenting avatar
behavior through Al-based co-speech gesture generation. Re-
cent work [29] investigated the use of a co-speech gesture
generation model to infer full-body motion from a continuous
stream of live audio input in an online interaction. Current
models for co-speech gesture generation use deep neural
networks to correlate speech audio with appropriate full-body
motion [1]-[11]. Subjective evaluation shows that these mod-
els produce smooth and indistinguishably human-like motion,
while still lacking a good relation to speech content [27].
However, human-likeness of motion is more important for user
immersion than communicative function, making existing Al
models suitable for integration into Social XR applications.
This integration however is difficult, because these models
are not tailored for online interaction. They are usually not
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optimized in terms of inference speed and exploit auditory
information of the whole utterance to match the rhythm of
the speech. This information, however, is not available in a
real-time scenario.

In previous work [29] we explored an incremental gesture
generation approach, by providing an AI model with a constant
stream of live audio information. This information was split
into chunks of varying lengths from several seconds down to
half a second. By changing the chunk size, we restricted the
amount of information the model got access to and evaluated
the resulting behavior in a user study, showing a steep decline
in subjective ratings for gestures generated from lower chunk
sizes. The length of the initial increment represents the major
portion of the resulting latency, when using the system in
online interaction and even the lowest chunk size of 0.5
seconds caused too much delay to enable a fluent conversation
[28], [30], [31].

In this paper we present a substantial extension of this work,
by presenting a model that allows for a minimal latency of
down to a single frame, without sacrificing motion quality. In
the following, we briefly discuss related work regarding co-
speech gesture generation, leading to the basic ideas behind
an incremental approach to handle live audio. We identify the
reasons for a decline in gesture quality when using smaller
audio chunks, and we present a new pipeline that minimizes
the chunk size while retaining the quality of the baseline
system. We evaluate this approach with a human rater study
in direct comparison to the findings with larger chunk sizes
in the previous work. Finally, we discuss the implications of
our findings and provide an outlook on ways how to enhance
Social XR using Al

II. RELATED WORK

Co-speech gesture generation describes the process of infer-
ring non-verbal behavior from a given utterance. While early
systems relied on a set of hand-crafted rules [24], [25], the cur-
rent state-of-the-art is dominated by different neural network
architectures [1]-[21], directly mapping speech audio, text,
or both to full-body motion. Rule-based systems generated
gestures that contained lots of information and were aimed at
increasing the communicative efficacy of virtual agents. Data-
driven systems, on the other hand, aim for behavioral realism
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Fig. 1. An overview of the envisioned environment with motion captured and not captured users participating in a shared space. Depending on the input
device, a different behavior generation module activates to transfer or generate full-body motion.

in terms of human-likeness of the motion. This is achieved by
analysing frequencies in speech audio, to accurately produce
beat gestures, matching the speech rhythm. The resulting
behavior is perceived as natural and plausible by human raters
[27]. Some systems exploit text information to create a link
to the speech content and produce more meaningful gestures.
Howeyver, this is still an active research direction as even
the most sophisticated models produce gestures that are rated
significantly less appropriate than ground truth motion.

Most current systems rely on sequential techniques like
auto-regression and recurrent architectures to achieve a smooth
motion sequence; other systems even smooth the resulting
gestures afterwards to eliminate jerkiness. Some approaches
produce the output gesture sequence all at once, whereas
others create it frame by frame allowing for generating a non-
predefined sequence length. Recent work has proposed to use
diffusion models, but the performance is not significantly bet-
ter and these systems are extremely slow [32]-[34]. Different
ways have been investigated to control the gestures a model
produces. This control may consist of manipulating principle
components of the learned gesture space or directly affecting
gesture radius, handedness, or height [1], [2], [14]. Gestures
can also be controlled via style presets describing a particular
way of gesticulating, attributed to a specific person, emotion,
or situation [2], [15]. For this, the model either has to be fine-
tuned on a data set of the desired speaker [15], or a style
embedding is calculated and fed to the model at runtime [2].
An extensive overview over the different models is given by
Nyatsanga et al. [26].

The model that was used in our previous work [29] is
the ZeroEGGS model by Ghorbani et al. [2]. This model
was chosen as its performance outperforms other audio based
models and as it fulfills the requirements for integration
into an incremental real-time generation pipeline. The model
takes speech audio as input, as well as a style example.
It then produces gestures in an Encoder-Decoder fashion,
by calculating speech and style embeddings and feeding the
concatenated vector to a recurrent decoder, which then updates
the character pose frame by frame. The accompanying data
set includes 19 different styles, ranging from emotions like
happy, sad, or angry, to discourse contexts like agreement and

disagreement. The style embeddings can also be combined via
linear interpolation, covering an extensive space of gesturing
styles. Apart from style control, ZeroEGGS also allows for
the specification of a starting pose, when generating a gesture
sequence which is especially useful for generating partial
gestures and stitching them together to form a continuous
sequence.

III. MODEL

Building on the ZeroEGGS model, we have proposed an
incremental processing approach that slices the incoming au-
dio stream into chunks of predefined length, generates gesture
segments for a chunk, and ensures continuity across chunk bor-
ders [29]. The resulting gestures were incrementally combined
and animated on a virtual avatar in Unity. This approach was
evaluated for chunk sizes ranging from 5 seconds down to 0.5
seconds, showing a steep decrease in subjectively perceived
gesture quality for smaller chunk sizes. One reason for this is
that shorter audio sequences result in a different frequency
spectrum, over-representing lower frequencies in the audio
data, which in turn leads to a faster gesture rhythm that
does not accurately match slow speech sections, which in
turn leads to lower ratings in terms of temporal synchrony
and appropriateness. Additionally, when working with partial
gestures derived from smaller audio chunks, the continuity of
the final motion sequence has to be guaranteed by enforcing
the starting point of each chunk to be equal or similar to the
last frame of the previous chunk. To prevent jumps, chunks are
then blended together slightly which smooths out the gestures
and damps the motion, especially for very small chunk sizes.

To overcome these limitations, we extended the previous
model with a long-term memory that preserves and carries
over temporal information across successive increments. To
that end we introduce a latent vector, containing pose and style
information, that is updated with each increment. It effectively
initializes and saves the cell state of the recurrent decoder
before and after each inference. This allows the model to
utilize the same amount of long-term information as if the
input sequence was given all at once. This way, we can in
principle minimize the resulting latency by reducing the chunk
size even down to the equivalent of a single frame. Further,



we also do not have to interpolate between animations as we
are working with single keyframes.

In the new model, we keep the general design of the
generation pipeline, divided into audio recording, speech pro-
cessing, gesture generation and visualization. We start by pre-
calculating a style embedding and initialize a starting pose as
well as a hidden decoder state before the generation process.
We then read an audio chunk equivalent to a single frame
from the input audio stream and calculate a singular speech
embedding. We then predict a body pose and the next decoder
state, based on the speech embedding, the style embedding and
the current decoder state. The body pose is represented as a
sequence of joint angles, which are passed to our visualization
environment. In Unity, the joint angles are parsed and used
to create a keyframe for the target avatar, which is played
immediately as it becomes available. After a frame has been
generated the decoder state is updated and the next audio frame
is processed to generate the next pose. The new input then
consist of a new speech embedding, a new style embedding
and the updated decoder state from the previous inference. An
overview of the architecture is shown in Fig. (2).

In the previous model the lowest possible chunk size was
0.5 seconds, which led to an overall delay between audio
input and animation playback of around 900ms. However, the
recommended latency for applications like Zoom is around
150ms or lower [28], so when accounting for inference time
and network latency, the chunk size needs to undercut that. A
single frame of the avatar animation is equivalent to 16.7ms at
a frame rate of 60 fps and can be generated within 4ms, which
is well below the required latency, enabling the continuous
generation in online interaction. The new model presented
here allows for any number of frames to be generated per
inference step, down to a single frame. More frames lead
to a longer audio sequence and a larger speech embedding
vector. The frequency information is extracted by calculating
a mel-spectrogram with a filter length of 800 samples and a
hop length of 200 samples. Longer input sequences therefore
increase the amount of information the model can gather, but
also increase the resulting latency. As the generation of a
single gesture frame takes about a fourth as long as playing
the frame during visualization, it is possible to increase the
audio window a single frame is based on by up to three times,
before running into continuity constraints in the visualization,
because frames are not produced in time.

IV. EVALUATION

Our approach for frame-wise gesture generation allowed for
the animation of continuous full-body motion on an avatar.
From visual inspection, we could not tell a difference in quality
when providing shorter or longer input audio sequences. To
more thoroughly evaluate the performance and compare it
against the previous incremental system, we conducted a
human rater study analogous to [29], keeping the baseline
condition as a comparative measure and adding conditions
with different frame counts well below the previously lowest
chunk size.
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Fig. 2. An overview of the architecture for generating a body pose from a
single speech embedding, adapted from [2] and extended by the hidden state
update (outlined in red).

A. Procedure

To investigate the effects of generating different amounts
of frames at once, we recorded videos of the different condi-
tions animating gestures in synchrony with the corresponding
speech audio and had them rated by human participants in
an online study. We utilized a playback process to simulate a
real-time audio recording with controllable input, which reads
a sound file and sends a specific amount of audio samples
to the generation process, waiting in between each increment
for the corresponding duration as if the audio was becoming
available in real-time. We used the 5 styles from the previous
study, which originated from the source data set by Ghorbani
et al. [2]. These were ”Angry”, ”Neutral”, “Relaxed”, ”Sad”
and ”Speech”. Each audio file was processed in chunks of 20,
10 and 5 frames, as well as directly frame-by-frame. We chose
these specific sets to cover the lowest possible frame count of
1, as well as an amount of samples that exceeds the length of
the underlying audio filter at 5 frames, or 1335 samples. Also,
10 frames correspond to about 160ms of audio, which is about
the maximum recommended latency for online interaction and
we tested 20 frames to see if there was an improvement when
increasing latency.

The study was performed via Prolific [23], using a Ques-
tionnaire by SoSciSurvey [22]. 50 participants, 25 male and 25
female, all native speakers of English, took part in the study. In
a within-subject design, they were each shown every video and
were instructed to watch the videos in their entirety and then
evaluate the behavior of the avatar by answering 7 questions on
a 7 point Likert scale. The questions were aimed to capture the
most common metrics for evaluating generated gestures. These
were “Human-likeness”, ”Smoothness”, ’Content Matching”
and “Beat Matching”. They should give us an idea if the
generated gestures contain motion untypical for humans, or
overly erratic behavior, as well as if the produced gestures
match the content and rhythm of the corresponding speech
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Fig. 3. Results of the evaluation study, comparing gestures produced by processing 20, 5 or 1 frame of input audio at a time, as well as the control condition
using full audio information (FA). The hollow bar illustrates the ratings of the lowest latency condition (0.5s chunks, or 30 frames), when using the previous
system presented in [29]. Mean subjective ratings are given with confidence intervals and significance levels relative to ZeroEGGS, when given the full audio,

according to Dunn test with bonferroni correction.

segment. We also asked if the speaker seemed “Convincing”,
”Motivated”, or “Likeable” to capture the general reception of
the avatars. We included attention checks in regular intervals
to exclude inattentive raters. Raters that passed all attention
checks, but answered the questions within well below 20
seconds were also excluded, because they could not have
watched the entire video. 12 participants were excluded this
way.

B. Results

The results are given in Figure (3). All conditions received
similar ratings between 4 and 5 on all scales, except the
“Likeability” scale, which shows ratings slightly below 4
for all conditions. That is, we can confirm the consistent
performance of our model, independent of the number of
audio frames inputted at once when processing in an in-
cremental manner. In result, our pipeline no longer impacts
the gesture quality of the baseline model, when generating
gestures incrementally. We have also included a result from our
previous study [29], visualized as a hollow bar in Figure (3).
This was the average rating for the lowest latency condition
when using the old system, generating gestures in 0.5 second
chunks, which is equivalent to generating 30 frames with
the new system. We are now able to achieve significantly
better ratings, while reducing latency well below the prior
minimum. However, it is important to note that these results
are gathered from presenting participants with videos that were
generated offline and using a simulated real-time audio source
(as in our previous study [29]). This controlled input led to
visually indistinguishable behavior for the different conditions.
When testing the pipeline with actual live audio from a
microphone, there was a small but noticeable difference in beat
synchronicity. We plan on performing an interaction study in
a networked environment to evaluate the system on actual live
audio. Additionally, some of the participants stated, that the
study was boring and tedious, which was not noted on the
previous study. This may be due to the extreme similarity of
the motion between the conditions. After a while, participants
may have felt indifferent about the videos and rated every
video similarly without thoroughly investigating the motion.
To capture more subtle differences, we plan on comparing
different conditions side by side in our next study. This may

also help to keep participants engaged, as they no longer have
to watch several identical looking motion sequences in short
succession.

V. CONCLUSION

In this paper we have presented an approach to use a gen-
erative Al model to create co-speech gestures from live audio
to augment Social XR scenarios. We were able to minimize
the system’s latency while maintaining the resulting gesture
quality to match that of the baseline system, by implementing
a frame-wise pipeline with a latent state as persistent long-term
memory over multiple inferences. We evaluated the subjective
perception of the generated behavior and compared it to the
previous results. The performance was improved significantly
in every respect, allowing the integration into an online
interaction scenario without a quality trade-off and opening
up multiple avenues for further research. We envision several
follow-up studies to investigate the perception of generated
gestures in a real interaction, both from an observer standpoint,
as well as from the perspective of the user. Also there are ways
to provide more agency to the user of a generative system.
By including more input modalities, such as capturing facial
features and head position via webcam or the front camera of
a smartphone, an appropriate style setting could be detected in
real-time to adapt the gestures to the user’s mood for example.

In sum, Al technology holds a lot of potential to process dif-
ferent input modalities in order to enhance Social XR scenarios
by augmenting the environment or supplementing missing
information. This opens up new possibilities to increase the
user’s immersion or sense of agency in VR or XR.
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