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Figure 1: A motion sequence generated incrementally by our gesture generation pipeline from speech chunks of 1 second.

ABSTRACT

Extended Reality (XR) has a potential to allow social interaction for
people that are distant from one another, in educational, clinical or
co-working applications, as well as for scientific studies. However, a
full-blown embodied social presence and interaction via avatars in
XR requires motion tracking hardware that many users do not have.
At the same time, modern machine learning approaches enable the
synthesis of natural and life-like nonverbal behavior, but only in
offline settings and with considerable lag. We evaluate the applica-
bility of current gesture generation systems for online interaction
in social XR. We define a set of requirements for real-time-capable
gesture generation and propose an approach to employ a state-of-
the-art model in a real-time XR interaction pipeline. To test the
model under conditions of online interaction, we divide an input
audio stream into chunks of different lengths and stitch the result-
ing gesture animations together to form continuous motion. We
evaluate the quality of the resulting multimodal avatar behavior
in a user study. Our results show a significant trade-off between
real-time generation capabilities and gesture quality. Suggestions
for future improvement to retain model performance during online
interaction in Social XR are made.

CCS CONCEPTS

« Computing methodologies — Neural networks; Procedural
animation.
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1 INTRODUCTION

Social interaction plays an important role for human well-being. It
helps share the joys and burdens of everyday life and serves as an
outlet for stress and frustration. The recent period of social isolation
due to the corona pandemic has shown the devastating effects a
lack of social contact can have, but also led to a surge of alternative
ways to connect over long distances. Voice calls, video conferences
and immersive virtual worlds have helped people overcome this
tough time. Virtual communication also has been adapted in educa-
tion, therapeutical, as well as co-working settings and the resulting
flexibility is still valued even after contact restrictions were lifted.
The most prominent way of interacting virtually were video calls.
However, they only approximate face-to-face conversation and lack
scale, presence, and immersion.

Virtual worlds, on the other, hand provide interactive environ-
ments that enable users to dive into alternate realities together
with another. The use of such worlds for social gatherings can be
summarized under the umbrella term "Social eXtended Reality”, or
“Social XR”. This encompasses the use of Virtual Reality, Augmented
Reality as well as regular display devices to engage with this social
space. Depending on the input/output device, the experience in
Social XR varies a lot, mainly in terms of immersion and presence.
The degree of immersion heavily depends on the sense of agency
over ones avatar as well as how realistically other avatars look and
behave, and impacts the resulting behavior of users [24].
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Photo-realistic worlds have become the status quo in industry,
with techniques like real-time ray tracing and 4k textures. Even per-
sonalized human avatars can be created in minutes nowadays [27].
Unfortunately, achieving realistic behavior is a lot more difficult
and can get very expensive. Capturing and transferring full-body
motion onto virtual avatars is possible and tremendously helps
with immersion and feelings of self-presence [7, 16], but requires
complex setups like VR devices or motion capture systems which
normal users do not have.

We aim at exploring how users can participate in Social XR via
common devices such as Desktop PCs or Smartphones. To compen-
sate for the lack of body tracking on those devices, we propose to
use A.L-based generative models to simulate the avatar behavior
that is needed for face-to-face encounters in Social XR. Such behav-
ior augmentations must fit the given situation and match the actual
user’s behavior, most importantly the user’s verbal utterances. We
focus on co-speech gestures, the communicative bodily movements
that humans exhibit in conjunction with speech. They are known
to convey important information, aid mutual understanding and
provide insight into complex social mechanism, such as sympathy,
emotions or standing [19]. This makes them an integral part of
human communication.

In particular, we ask if and how co-speech gesturing of an user’s
avatar in Social XR can be generated in real-time, when the user
only delivers speech input but motion tracking is unavailable. This
is a challenging problem due to two reasons: (1) gestures need to be
convincing and believable, as studies have shown that humans are
quite sensitive to unusual gesticulation and are able to reliably dis-
cern generated from real motion subconsciously, even though there
is no objectively correct way of gesticulating in a given situation
[28]; (2) gesture generation must meet realtime requirements in an
online interaction in which latencies can lead to non-fluent or inter-
rupted interaction. Recent work has developed deep learning-based
approaches for generating co-speech gestures, which manage to
produce natural gestural motion. However, these approaches run
offline and it is not clear whether such approaches can meet these
real-time requirements and what the consequences for the quality
of the generated gestures are.

In this paper we will discuss the fundamental effects of Social VR
and avatar-based interaction and tie this into possible directions for
improving behavior generation systems. First, we evaluate the state
of the art in generative systems for co-speech gestures with respect
to their potential to enhance Social XR experiences. We then formu-
late requirements specific to our scenario and sort out approaches
that we deem insufficient. After identifying the most suitable model,
we integrate this model into a real-time gesture generation pipeline
to generate continuous gesturing motion of an avatar from speech
input. We report the results from a subjective online user study
designed to evaluate our pipeline and identify a trade-off between
gesture quality and the responsiveness of our system. After dis-
cussing the implications of our findings, we open up avenues for
further research to achieve gesture generation pipelines to enhance
avatar behavior during interaction in Social XR applications.
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2 RELATED WORK
2.1 Avatars and Agents

As Balienson and Blascovich stated in 2004 [2], avatars and agents
are distinctly different per definition but, in practice, the criteria
overlap. Avatars are defined as virtual representations of humans
who are in control of the avatar’s actions. Agents are entities that
act and behave autonomously in a virtual environment based on
goals and plans set by an algorithm. In XR, directly controlling
every aspect of behavior of an avatar through tracking devices is
unrealistic. Therefore the definition blurs, as certain parts have to
either be controlled indirectly or generated outright. In our case,
the generation of nonverbal behavior based on speech serves as
an indirect control, such as pressing a button to move forward in
a video game, yet does not break the barrier to being considered
a virtual agent, as the behavior is still controlled by some form of
user input. We thus consider our problem one of avatar behavior
augmentation, rather than one of agent behavior generation.

2.2 Social VR and Avatar-Based Interaction

It has long been argued that mediated online interaction is greatly
enhanced by communicating through animated avatars [26]. Previ-
ous studies showed that users experience greater levels of presence
and describe cooperation as more productive and pleasant, when
compared to non-avatar-based interaction [26]. The sense of pres-
ence and agency one has when controlling an avatar depends on
the plausibility of the behavior of one’s avatar as well as other
avatars. What is perceived as plausible is, in turn, modulated by
expectations based on appearance or previous experiences. Accord-
ing to a study by Herrera et. al. [8] comparing different kinds of
embodiment with varying degrees of realism, VR users experience
similar feelings of self-presence and interpersonal attraction during
dyadic interaction, as long as expectations about behavioral realism
are met. If users are only represented as floating heads, there is no
expectation of realistic hand movement, but if hands are present
there is an expectation for them to be controllable. If this is not
met, self-presence suffers. Interestingly, noticing one’s inability to
perform non-verbal behavior also alters the real-life movements of
users, as there is no need for gestures if they can not be seen by
the recipient. The behavioral realism of virtual avatars and how
they are embodied also influences the immersion of other users.
Depending on how realistic an opposite avatar looks, the expected
kind of behavior changes [8]. Being immersed in photo-realistic
worlds with photo-realistic avatars therefore puts a heavy demand
on both tracking and generation systems, as anything other than
completely human-like behavior may be perceived as uncanny or
inappropriate as it creates a mismatch when combined with real-
istic looking avatars. While motion tracking systems are able to
directly translate 3D pose data onto a virtual avatar, many users
that do not have such a system are excluded from attaining such
high levels of realism and thus immersion. For the case of co-speech
gesture, a gesture generation system is thus needed that does not
necessarily replicate the actual user’s (potentially even missing)
behavior, but needs to find plausible and natural gestural motions
that meet the user’s desired communicative function and do not
hamper feld immersion.
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2.3 Co-speech Gesture Generation

Early gesture generation systems relied on hand-crafted rules,
analysing the communicative intent of an utterance [11] and deriv-
ing a gesture that is meaningful and matches the verbal behavior
[3][13][17]. The resulting behavior had a very clear communicative
function, but was unnatural in terms of smoothness and continuity
of movement. Modern gesture generation systems rely on deep
neural networks to synthesize full body motion directly from dif-
ferent input modalities, most prominently speech, text, or both
[5][1][14]. Such data-driven gesture generation approaches range
from one-to-one mappings from speech/text to gesture, to learning
complex multidimensional gesture spaces capturing the relation
between both modalities, sometimes even differentiating between
personalized styles, emotions or discourse context [21]. Different
styles as well as stochastic generation techniques result in different,
plausible gestures for the same verbal utterance. Models that ex-
hibit such variable behavior have proven most successful given that
the resulting gestures are smooth and match the speech rhythm,
which tremendously impacts the perceived human-likeness of ges-
tures, according to subjective evaluations. On the other hand, as
not all information expressed in a gesture can be predicted from
the accompanying utterance, these models are often limited in the
semantic specificity of the generated output.

The gesture generation community regularly compares their
work as part of the yearly GENEA challenge [15, 28]. The resulting
evaluation papers, as well as other review papers like the one by
Nyatsanga et al. [21] give a good overview about the general per-
formance of current gesture generation models. The performance
is measured primarily in terms of human-likeness and appropriate-
ness. Human-likeness describes how likely the motion exhibited
as part of the gesture sequence could be performed by an actual
human being. This mostly refers to smoothness and plausibility
of the motion. Appropriateness, on the other hand, refers to how
well a gesture matches the content of the utterance (does it contain
useful information, is it the “right” gesture in that moment, or just
meaningless and repetitive). These quality measures are usually
evaluated in offline settings, where a generative model has access to
the whole speech segment at once and inference time is non-critical.
This has resulted in models that include audio information from
the “future” to generate an appropriate gesture for the “present”,
which is arguably requited as humans often exhibit gestures before
uttering the accompanying speech segment [19]. Further, the best
performing models often require a long time to generate gestures.
A particularly well received model by Alexanderson et. al. [1], that
is often used to compare new approaches to, generates probabilistic
gestures by sampling from a distribution, leading to an inference
time of about 29ms per generated frame which impacts the models
usability in real-time scenarios. Other approaches however achieve
comparable or even better performances, like the recent model by
Ghorbani et al. [5], while taking only 4ms per generated frame.

These tendencies in model design, as well as the incorporated
input modalities have to be re-evaluated when applying gesture
generation in Social XR. We will thus begin with formulating the
requirements and constraints for a generative model in our envi-
sioned scenario, before we then choose the most fitting model to
integrate and test it in a real-time generation pipeline.
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3 CONCEPT

3.1 Problem Statement and Requirements

Integrating gesture generation systems into Social XR applications
to drive avatars in real-time heavily restricts the amount of infor-
mation the models have access to. In a virtual face-to-face inter-
action, reacting to the interlocutor in a timely manner is critical,
so finding an appropriate gesture for the uttered response has to
be as quickly as possible. Consequently, there is no time for gen-
erating several gestures and sampling from them. Instead, motion
sequences have to be generated directly for any given input se-
quence. Also, future information is unavailable, as each second of
waiting for additional input would either result in asynchronous
gestures or require delaying the audio transmission, which can be
detrimental for communication mechanisms such as turn taking
(12][9].

We rely on speech audio as input modality in such scenarios,
recorded via microphone which is available on all suitable devices.
We will not expect a text transcription, to avoid introducing addi-
tional delays by employing speech-to-text systems. Yet, an addi-
tional constraint entailed by real-time interaction is the incremental
provision of input. In order to react swiftly to speech input, gestures
have to be generated piece-wise. Ideally each frame is generated
individually and can be applied at once. Unfortunately, one frame of
audio information does not provide enough information to generate
an appropriate gesture frame. We therefore intend to look at an
audio window instead. In practice this means dividing the audio
information into chunks just large enough to get the necessary
information to generate high-quality gesture segments, but small
enough start and adapt gesticulating as quickly as possible. The
resulting (possibly partial) gestures then have to be combined to
create smooth gesturing behavior for the whole utterance. This
requires some sort of control over the produced gesture, such as
providing a rough starting pose similar to the end pose of the pre-
vious gesture, because we want to model continuous trajectories
and not start from rest pose at every increment.

Figure 2 gives and overview over the necessary steps to be taken
before input speech can be translated to non-verbal behavior, which
is then sent to the interlocutor’s device in a networked environment.
As illustrated, a major portion of the total delay depends on the size
of the audio chunk that is processed, as well as the time it takes to
generate the corresponding gesture chunk. Additional delays are
either minor, or out of our control, which is why we will mainly
focus on chunk size as the parameter to optimize our system for
real-time use.

Our requirements can be summarized as follows:

e single output (no sampling from distribution)
e incremental generation

o little to no future information

e audio input only

o fast inference

e good gesture quality

e connectable gesture chunks
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Figure 2: The steps required from receiving speaker input to providing the complete verbal and non-verbal behavior to the
recipient (interlocutor). While data transmission speed and the time it takes to synchronize endpoints in a distributed XR
environment is out of our control, we can impact the size of the recorded audio chunks and tangentially the inference time of

the gesture generation model.

3.2 Choosing a Gesture Generation Model

As a starting point for development efforts, we evaluated the state-
of-the-art in gesture generation with respect to the above-mentioned
requirements and chose a model that seemed most fitting for our
use case. For a complete overview of the different approaches to
gesture generation and their performance, we refer to Nyatsanga
et al. [21], as we will focus on selecting a model that fits the criteria
for our application. We relied on the results of the GENEA Chal-
lenge 2022 Evaluation [28] which was just released. We examined
the submitted systems and excluded those that did not meet any
of our criteria. Limiting the selection to audio-based models left us
with three approaches [10][23][5].

Among those, only one model produced stochastic output, wich
was the ZeroEGGS model by Ghorbani et. al. [5]. Even when disre-
garding stochasticity, the Hybrid Seq2Seq model by Saleh [23] was
excluded for not providing frame-wise output and the TransGesture
model by Kaneko et. al. [10] was deemed unsuitable due to requir-
ing an additional smoothing step after generation, which would
have introduced additional delays. Conveniently ZeroEGGS also
achieved the highest subjective ratings among the models submit-
ted to the GENEA Challenge 2022 [28], which made it the perfect
candidate to integrate into our pipeline.

3.3 Online Gesture Generation Pipeline

To achieve a gesture generation system that is suitable for online
interaction, we had to minimize the time it takes the system to
react to speech input. That is, we could not wait for an utterance
to end before calculating an appropriate sequence of body poses.
Hence we had to process the audio input in incremental units and

connect the corresponding gesture chunks to a continuous motion
afterwards. The optimal size of these audio increments, however,
was an open question as it determines a major portion of the overall
lag (see figure 2), even before accounting for inference time and
other delays, as well as impacts the attainable gesture quality. We
thus decided to determine it empirically as described below.

We planned to gather speech input via microphone, send in-
cremental chunks to the gesture generation model, and pass the
resulting sequence of body poses along with the speech input itself
to the avatar visualization, which would be done in Unity. There
we had to combine the gesture chunks into one smooth continuous
motion, matching the speech input. Figure 3 shows how the gesture
generation pipeline works incrementally over time. We split the
critical components into separate processes to run as much calcula-
tions in parallel as possible. The chunks are processed in sequence
and without gaps, leading to a continuously running translation
from speech to gesture.

4 IMPLEMENTATION

The ZeroEGGS model is able to generate gestures in several different
styles, by calculating a style embedding based on an exemplary
motion file. As this produces a major overhead, we calculated this
embedding before starting the generation process and applied it to
every upcoming audio embedding to avoid calculating it separately
for each increment, increasing the responsiveness of the system.
Also, loading the models and other necessary data for the gesture
generation was done in advance.
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Figure 3: The incremental gesture generation and visualiza-
tion pipeline. Audio data is recorded, speech embeddings are
calculated, gestures are generated, and visualized in Unity.

4.1 Recorder

The recording of speech audio was done using Pyaudio [22] and the
audio stream was captured as a float32 array of 1 channel with a
frame rate of 16000Hz. The audio was recorded in chunks of varying
lengths and then passed through a multiprocessing queue to the
main process which ran the ZeroEGGS model.

4.2 Gesture Generator

The Variational Autoencoder (VAE) architecture utilized by Ze-
roEGGS features a speech encoder network and a decoder network,
which generates the gestures. The encoder takes the raw input
audio and calculates a speech embedding. This speech embedding,
after being passed to the generator process, is concatenated with
the pre-computed style embedding vector and fed to the decoder.
The decoder outputs a sequence of joint positions and rotations,
which are then translated into the common animation format "Bio-
vision Hierarchy” (BVH). The format consists of a definition of the
bone hierarchy and offsets, describing the initial pose of a skeleton,
followed by a sequence of joint rotations, composing the motion
data. This format is widely used in animation and human readable,
making it flexible and easy to integrate into visualization software
like Blender, Unreal and Unity.

Rather than writing the BVH data to a file and reading it from
inside the Unity application, we packaged it as a string and serialized
it with JSON to send it over to Unity via a websocket connection,
for a faster data transfer. Additionally, each generated gesture is
passed back to the generator to serve as an input, constraining
the model to output gestures that begin with the last pose of the
previous gesture chunk, to ensure continuity in the final motion.

4.3 Visualizer

Visualization in Unity was achieved by launching the Unity Applica-
tion as a websocket server, with several python clients connecting
and controlling different avatars. We used the *websocket sharp”
repository by the user “sta” on Github [25]. Animating the avatar
in Unity was done by employing the "BVH Tools for Unity” plugin
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[4]. The plugin reads incoming BVH data in string format, parses
the skeleton, gathers the animation curves and then adds the corre-
sponding animation clip to a target avatar’s animator component.
This can be done at run-time.

The individual animations were combined to a continuous mo-
tion by smoothly interpolating between the last pose of the previous
gesture and the starting pose of the next gesture. The interpolation
takes place over up to one second. To not impact the appearance
of each animation and to fade animations into each other, they
both have to be available at the same time. We thus extended the
length of each gesture fragment while keeping the audio chunk
length intact. We mirrored and appended the last 0.5 seconds of
the recorded raw audio array to itself and therefore provided a
buffer for animation fading. We decided to take parts of the actual
audio array instead of padding it with zeroes or random values,
because we wanted to maintain the speech rhythm of the segment
and avoid sudden pitch changes, resulting in jerky gestures towards
the buffer.

5 STUDY

The resulting pipeline enables the generation of continuous full-
body motion on an avatar in Unity, controlled by real-time audio
input, subdivided into chunks of adjustable lengths. The length of
these chunks determined a major portion of the resulting delay
between audio input and the corresponding gesture being executed.
Therefore, setting the chunk size as low as possible was essential,
to enable synchronous execution of verbal and non-verbal behavior.
Visual inspection, however, already showed a noticeable change in
gesture quality when decreasing the chunk size. We thus designed
a human rater study to evaluate the degree of gesture degradation
for various chunk sizes, and to compare it to ground truth motion
as well as baseline ZeroEGGS without chunking.

5.1 Procedure

To investigate the effects of using different chunk sizes in the ges-
ture generation pipeline, we generated different outputs of synchro-
nous motion and audio sequences for the same audio input (but
with different chunk sizes) and had them rate by human partici-
pants. We implemented a playback process to simulate a real-time
audio recording with controllable input by reading a sound file and
sending the audio information in chunks, waiting between each
chunk for the corresponding duration as if the audio was becoming
available in increments. We used 5 different audio files from the
test set of the ZeroEGGS data set, which was published alongside
the architecture [5]. We used recordings covering the styles "An-
gry”, "Neutral”, "Relaxed”, "Sad” and "Speech”. Each audio file was
processed in chunks of 0.5, 1 and 2 seconds to test plausible sizes
in a practical scenario and in 5 second chunks to test the effect of
incrementally providing audio in general. As control conditions we
chose to provide the full audio information at once to the model, to
capture the baseline behavior of ZeroEGGS, as well as the ground
truth motion that we just played in synchrony with the audio in
Unity, without using our generation pipeline.

We generated videos with a duration of 20 seconds for each
variation. We performed an online study via Prolific [18], using a
Questionnaire by SoSciSurvey [6]. 50 participants, 25 male and 25
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female, all native speakers of English, took part in the study. In
a within-subject design, they were each shown every video and
were instructed to watch the videos in their entirety and then
evaluate the behavior of the avatar by answering 7 questions on a
7 point Likert scale. The questions were aimed to capture the most
common metrics for evaluating generated gestures. These were
“Human-likeness”, "Smoothness”, "Content Matching” and "Beat
Matching”. They should give us an idea if the generated gestures
contain motion untypical for humans, or overly erratic behavior,
as well as if the produced gestures match the content and rhythm
of the corresponding speech segment. We also asked if the speaker
seemed “Convincing”, "Motivated”, or "Likeable” to capture the
general reception of the avatars. The participants were not aware
of the fact that some of the motion was generated and some was
captured motion.

We included attention checks in regular intervals to exclude inat-
tentive raters. Raters that passed all attention checks, but answered
the questions well below 20 seconds were also excluded, because
they could not have watched the entire video.

5.2 Results

The results (see Figure 4) show ratings between 4 and 5 for the
control conditions in terms of human-likeness and smoothness and
no significant difference for the 5s condition. The conditions with
lower chunk sizes were rated significantly lower than the baseline.
The ratings for content matching and beat matching also lie be-
tween 4 and 5, with 5s being only slightly worse and smaller chunk
sizes performing significantly worse. The ground truth condition,
however, scores significantly higher than the baseline ZeroEGGS
in terms of appropriateness to both speech rhythm and content. A
similar picture emerges on the remaining scales, where the perfor-
mance degrades with smaller chunk size. The ground truth condi-
tion shows the highest scores, being rated above ZeroEGGS both
in terms of being convincing and motivated, but similar on the
likeability scale. The conditions 5s and 2s perform just as well as
the baseline, but further reducing chunk size again leads to lower
ratings in all cases. Interestingly, the motivation scale does not
show a significant change when using 0.5s chunks as compared to
not chunking at all.

6 DISCUSSION

Based on the results of our study, we can confirm the performance
of ZeroEGGS as it was reported previously [5][28], exhibiting
comparable behavior to ground truth in terms of human-likeness,
but struggling with appropriateness. We attribute the generally
mediocre ratings to the visualization on a virtual avatar, which has
additional shortcomings such as its general appearance, the lack
of mouth movement and animation artifacts, making it appear less
human-like even without accounting for the behavior. With the
baseline generation conditions rating similarly to ground truth, we
conclude that our generation and visualization pipeline works as
intended and we can evaluate the results relative to the baseline
ZeroEGGS performance.

The first thing we can see is that chunking the input audio into
incremental units generally seems to have very little effect, as 5s
chunks produce similar performance in all metrics, compared to
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not chunking at all. Decreasing chunk size, however, lowers the
gesture quality. We see a decrease at every step, where the quality
declines more strongly the smaller the chunks get.

Although we did not do a thorough analysis on the effects of
different style embeddings on the subjective ratings of our system,
the available data allows for a preliminary assessment. While we
could see that the "Neutral” and "Speech” styles achieved the high-
est ratings overall, with the other styles ranking similarly low, the
degree of degradation with decreasing chunk size varied heavily
between the lower ranking conditions. Especially when looking
at "Content matching” and "Beat matching” the "Relaxed” style
achieved around 5 points on the Likert scale on average for the
ground truth condition and over 4 points for the full audio one.
The performance heavily decreases when using chunk lengths of 2
seconds or less, going as low as 1 point for the 0.5 second condition.
The "Angry” style on the other hand does not show this kind of
behavior. Generated results perform worse than ground truth, but
chunk size does not seem to affect the performance as much. Visual
inspection of the respective gestures reinforces this finding as styles
like "Angry” or "Speech” looked similar when using 5, 2 or even
smaller chunks, while "Sad” or "Relaxed” samples diverged greatly
from the baseline ZeroEGGS behavior. Those styles feature a much
slower speech rhythm and therefore much slower gestures. We
hypothesize that providing the audio information in increments
prevents the model from capturing these low frequencies and pro-
hibits the large and protruding gestures that would be appropriate,
which explains the lower ratings for smaller chunk sizes.

Interestingly, we can also see that the likeability ratings for all
conditions were similar, with only slight decreases in performance
for the smallest chunk sizes. This indicates that generative systems
may indeed improve user experience in Social XR regardless of
the specific gesture quality, at least for interlocutors. To further
investigate the effect, we would have to compare likeability to still
avatars or avatars that produce prerecorded motion that is not
related to speech. In addition, it is important to study the effect
on the perception of the actual users whose avatar performs the
generated gestures.

7 CONCLUSION

We proposed the application of behavior generation systems to
enable the use of Social XR spaces for users without full-body
tracking hardware. We established a set of requirements to enable
responsive real-time gesture generation. Based on an analysis of
state-of-the-art models, we chose a model and integrated it into a
processing pipeline for multi-user avatar-based interaction in Unity.
We evaluated the reception of the results of our generation pipeline
run at different levels of responsiveness (i.e. chunk sizes). We found
a significant trade-off between gesture quality and lag optimization,
which is not only elucidating for the design of inter-operable Social
XR environments, but also demonstrates how an exemplary state-
of-the-art gesture generation model degrades when the available
speech input is reduced.

Based on this we can formulate avenues for future adaptations
to our system to improve the overall performance in a Social XR
scenario. We saw that, up to a certain point, longer audio chunks
lead to better co-speech gestures. In a time critical application such
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Figure 4: Results of the subjective evaluation study, comparing gestures produced from audio chunks of 5 seconds, 2 seconds, 1
second or 0.5 seconds duration, as well as the control conditions using all audio information (FA) and ground truth motion
(GT). Mean ratings are given with confidence intervals and significance levels relative to ZeroEGGS, when given the full audio,

according to Dunn test with bonferroni correction.

as interaction in Social XR, however, gathering longer increments
would lead to larger delays between speech input and gesture exe-
cution, which would prevent speech-gesture synchronization. We
see a way of enforcing synchronization by delaying audio playback
until the corresponding gesture chunk is generated, as we did for
our study. According to our results, this would lead to a better
reception of the resulting behavior, but in a practical scenario it
may unfavorably impact the interaction dynamics such as turn-
taking, lowering the overall quality of the interaction. There may
be a compromise between delaying speech and accepting a slight
speech-gesture asynchrony. The impact of these delays, however,
has to be examined in an interaction study, which will be one of
our next goals.

Given that there is likely no perfect compromise, our ideas for
circumventing the aforementioned issues open up two directions
for future work. A way of retaining interaction quality, even though
speech and gesture are noticeably delayed would be to prime users
to accept these delays and wait for a while before expecting re-
sponses from the interlocutor. The communication would then be
akin to interacting with a chatbot, where users attribute delayed
responses to the system "thinking" about the request. In practice
this could mean that an indicator has to be designed to signal that
a conversation partner is currently working on a response, so that
the user does not input another utterance before the previous utter-
ance was responded to. Unfortunately this kind of behavior would
easily give away users that are not using motion tracking devices,
potentially impacting the immersion of other users.

A similar system, employing an actual chatbot was already pro-
posed by Nagy et. al. [20], using the Gesticulator model [14] by
Kucherenko et. al. to drive a virtual agent in Unity. The chatbot
backend has the advantage that utterances are generated in text,
giving more information about speech content, leading to more
appropriate gestures. A disadvantage on the other hand is the neces-
sity for using a text-to-speech system to generate audio. Synthetic
audio sometimes leads to strange behavior in conjunction with
gesture generation systems, because it features an unusual rhythm
and rapid tonal changes. Another benefit of the chatbot interaction
is that the system can justifiably wait before responding, giving
enough time for gesture and speech production. In Social XR, how-
ever, such a behavior may come at the cost of reduced fluency of the
conversation and can negatively impact comfort and immersion for

users. Unfortunately the authors did not evaluate the perception of
their architecture, therefore we can only theorize about the effect
of an embodied chatbot on the subjective user experience.

The other avenue we are currently exploring is an adaptive
chunking technique, which would gradually increase the chunk
size to produce higher quality gestures the longer the system runs,
while retaining responsiveness. More precisely, we would start
generating gestures in the smallest chunk size (e.g. 0.5s) as soon
as we detect speech input to minimize lag. Then, as the utterance
continues and more and more audio becomes available, the previous
chunks are combined to then generate gestures based on a longer
input sequence. The main challenge with this approach is that we
would be generating overlapping gesture sequences and would have
to only append the last 0.5 seconds (depending on initial chunk size)
of each motion sequence to the currently running animation. This
may lead to problems of continuity, because we can not enforce a
specific body pose 0.5 seconds before the end of a generated gesture
and it also constrains the inference time of the model. Inference
time increases with the length of the audio input and the initial
chunk size will determine the maximum inference time, even for
the bigger chunk sizes, because the next gesture has to be produced
before the previous motion has been executed and new motion still
becomes available in increments of 0.5s.

Another exciting prospect of incremental gesture generation is
that gesture parameters need not be fixed for the whole interaction.
Theoretically any control parameters, like the gesturing style, can be
changed with every increment, enabling the system to dynamically
switch its behavior even during a single utterance. This opens up
the possibility of generating more appropriate gestures for speech
sequences with changing valence, where a fixed style would be
inept.

In sum, employing generative systems to enhance Social XR
experiences for users without full-body tracking hardware can be
considered a promising approach. We have investigated an incre-
mental approach to generate continuous motion sequences and
provided avenues to further increase the responsiveness of our
system, while retaining motion quality. This poses a first step to-
wards real-time co-speech gesture generation in online interaction
in Social XR.
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